
Tools for (better) computational biology
This manuscript (permalink) was automatically generated from computer-aided-biotech/better-cb@8ec50ea on April 20,

2022.

Authors

Daniela C. Soto *
 0000-0002-6292-655X · dcsoto · dcsoto_cl

Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, Davis, CA 95616,USA

Benjamín J. Sánchez *
 0000-0001-6093-4110 · BenjaSanchez · BenjaSanchez

Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark

Megan Y. Dennis
· meganamsu · meganamsu
Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, Davis, CA 95616,USA

Nikolaus Sonnenschein
· phantomas1234 · phantomas1234
Department of Bioengineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark

https://computer-aided-biotech.github.io/better-cb/v/8ec50eabfd693fc21959bce490f441f7c9d7df8d/
https://github.com/computer-aided-biotech/better-cb/tree/8ec50eabfd693fc21959bce490f441f7c9d7df8d
https://orcid.org/0000-0002-6292-655X
https://github.com/dcsoto
https://twitter.com/dcsoto_cl
https://orcid.org/0000-0001-6093-4110
https://github.com/BenjaSanchez
https://twitter.com/BenjaSanchez
https://github.com/meganamsu
https://twitter.com/meganamsu
https://github.com/phantomas1234
https://twitter.com/phantomas1234

Abstract

As biotechnological and biomedical research are increasingly fed by the insights arising from
computation, the conversation about good practices in computational biology becomes more and
more prominent. An increasing body of literature has addressed practices for shareable, reproducible,
and sustainable computational research, from high-level principles for data and software stewardship
to deep dives into version control or software automation. However, implementing these practices
relies on incorporating the right tools into our daily routines, considering the type, scope, and stage of
the research project. Here we provide a compendium of relevant tools for computational biology
research, emphasizing their time and place within a continuum that traverses personal, collaborative,
and community practices. This compendium will serve as a starting point and guide to help navigate
the ongoing in�ux of tools and how to best incorporate them into a computational biologist’s working
routine, enabling reproducible biomedical and biotechnological research in the long term.

Introduction

Since Margaret Dayho� pioneered the �eld of bioinformatics in the sixties, the application of
computational tools in the �eld of biology has vastly grown in scope and impact. At present,
biotechnological and biomedical research are routinely fed by the insights arising from novel
computational approaches, machine learning algorithms, and mathematical models. The ever-
increasing amount of biological data and the exponential growth in computing power will amplify this
trend in the years to come.

The use of computing to address biological questions encompasses a wide array of applications
usually grouped under the terms “computational biology” and “bioinformatics.” Although distinct
de�nitions have been delineated for each one [1,2], here we will consider both under the umbrella
term “computational biology,” alluding to any application that involves the intersection of computing
and biological data. As such, a computational biologist can be a data analyst, a data engineer, a
statistician, a mathematical modeler, a software developer, and many other roles. In praxis, the
modern computational biologist will be a “scientist of many hats,” taking on several of the duties listed
above. But �rst and foremost, we will consider a computational biologist as a scientist whose ultimate
goal is to answer a biological question or address a need in the life sciences by means of computation.

Scienti�c computing requires following speci�c principles to enable shareable, reproducible, and
sustainable outputs. Computing-heavy disciplines, such as software engineering and business
analytics, have adopted protocols addressing the need for collaboration, visualization, project
management, and strengthening of online communities. However, as a highly interdisciplinary and
evolving �eld, computational biology has yet to acquire a set of universal “best practices.” Since most
computational biologists come from diverse backgrounds and rely on self-study rather than formal
education [3], the absence of guidelines may lead many computational biologists astray, using
methods that hinder reproducibility and collaboration, such as unreproducible computational
work�ows or closed-source software, retarding biomedical and biotechnological research.

In recent years, this “guidelines gap” has been addressed by the establishment of FAIR principles—
Findability, Accessibility, Interoperability, and Reusability—in 2016 [4]. Originally developed for data
stewardship, FAIR principles have been proposed as universal guidelines for all research-related
outputs [5]. However, translating these high-level principles into day-to-day practices requires
additional nuances based on the type of research, the size and scope of the project, and the
researcher’s experience. To address the need for FAIR scienti�c software, for example, the framework
ADVerTS (availability of software, documenting software, version control, testing, and support) has
been proposed as a set of “barely su�cient” practices [5]. More broadly, reviews exist covering

general topics for bench scientists new to computational biology—such as programming and project
organization [6,7,8,9,10]—to detailed descriptions for the more seasoned data scientist—such as
work�ow automation [11], software library development [12], software version control with the cloud
service GitHub [13], and interactive data science notebooks with Jupyter [14].

Although the above reviews are immensely helpful, an overview of tools for better computational
biology is missing. Indeed, guiding principles and general advice are key to establishing a behavior
roadmap but their implementation is enabled by incorporating the right tools into our daily working
routine. Tool selection has many components, such as availability, suitability, and personal
preference; although the latter is left to the reader, here we will shed light on the �rst two. We
premise that good practices in computational biology lie within a continuum that traverses three
levels: personal (you), collaboration (your group), and community (your �eld) (Figure 1). Each of these
levels has a di�erent set of requirements and challenges, as well as a speci�c set of tools that can be
used to address them. Here, we compiled a curated list of these tools, emphasizing their time and
place in a computational biology research project. Committed to practicality, we illustrated the utility
of these tools in case studies covering a wide spectrum of research topics that computational
biologists can use to model their own practices, modifying them to suit their own needs and
preferences.

Figure 1: The three “levels” of computational biology include your personal research, your group and collaborators, and
the broader scienti�c community.

Level 1: Personal Research

The computational biology journey begins with you and the set of skills, tools, and practices that you
have in place to conduct your research. Taking the time to optimally establish these building blocks
will have high payo�s later when you �nd yourself going back to previous analyses. Consider that your
most important collaborator is your future self, be it tomorrow or several years from now. We devised
a framework involving four main sequential steps to kickstart any computational biology project
(Table 1).

Table 1: Steps involved in starting a computational biology project.

Step Use case Common tools

Step 1: Choose your
programming languages

Interacting with a
Unix/Linux HPC • Shell/Bash [15]

Data analysis • Python [16], R [17]

Scripts and
programs

• Interpreted: Python [16], R [18], Perl [19], MATLAB< [20],
Julia< [21]
• Compiled: C/C++ [22], Rust [23]

Work�ows

• Linux-based: shell script, GNU Make [24]
• Work�ow management systems: Snakemake (Python) [25],
Next�ow (Groovy) [26],
• Wor�ow speci�cations: CWL [27], WDL [28]

Step 2: De�ne your project
structure

Project structure • Templates: Cookiecutter Data Science [29], rr-init [30]
• Work�ows: Snakemake wor�ow template [31]

Virtual environment
managers

• Language-speci�c: virtualenv (Python) [32], renv (R) [33]
• Language agnostic: Conda [34]

Package managers
• Language-speci�c: pip (Python) [35], Bioconductor (R) [36], R
Studio package manager (R) [37]
• Language-agnostic: Conda [34]

Step 3: Choosing your
working set-up

Text editors
• Desktop applications: Atom [38], Sublime [39], Visual Studio
Code [40], Notepad++ [41]
• Command line: Vim[42], GNU Emacs[43]

IDEs
• For Python: JupyterLab [44], JetBrains/PyCharm [45],
Spyder [46]
• For R: R Studio [47]

Notebooks • Jupyter (Python, R) [44], R Markdown (R) [48]

Step 4: Follow good coding
practices

Coding style
• Styling guides: PEP-8 (Python) [49], Google (Python, R) [50]
• Automatic code formatting: Black (Python) [51], Snakefmt
(Snakemake) [52]

Literate
programming

• Markdown [53]
• R Markdown [48]

Version control
• Version control system: Git [54]
• Code repositories: GitHub [55], GitLab [56], Bitbucket [57]
• Git GUIs: GitHub Desktop [58], GitKraken [59]

Step 1: Choose your programming languages

Di�erent programming languages serve distinctive purposes and have unique idiosyncrasies. As such,
choosing a programming language for a speci�c project depends on your research goals, personal

preferences, and skillsets. Additionally, communities usually favor the usage and training of some
programming languages over others; utilizing such languages may facilitate integrating your work
within the existing ecosystem.

Interacting with high-performance computing (HPC) clusters has become a hallmark for the data-
intensive discipline of computational biology. HPC infrastructures commonly use Unix/Linux
distributions as their operating system. To interact with these platforms, a command-line interpreter
known as the shell must be used. There are multiple versions of shells, with Bash [15] being one of
the most widely adopted. In addition to providing an interface, the shell is also a scripting language
that allows manipulating �les and executing programs through shell scripts. Unix/Linux operating
systems have other interesting perks, such as powerful, fast commands for searching and
manipulating �les (e.g., sed, grep, or join) as well as the language AWK, which can perform quick text
processing and arithmetic operations.

One of the most common tasks of any computational biologist is data analysis, which usually involves
data cleaning, exploration, manipulation, and visualization. Currently, Python [16] is the most widely
used programming language for data analysis [60,61]. Python is also a popular language among
computational biologists, a trend that will likely continue as machine learning and deep learning are
more widely adopted in biological research. Python usage has been facilitated by the availability of
packages for biological data analysis accessible through package managers such as pip [35] or Conda
[34]. Likewise, R [18] is another prominent language in the �eld. Arguably, one of the main strengths
of R is its wide array of tools for statistical analysis. Of particular interest is the Bioconductor
repository [36], where many gold-standard tools for biological data analysis have been published and
can be installed using BiocManager [62]. R usage in data science has deeply bene�ted from the
Tidyverse packages [63] and surrounding community, increasing the readability of the R syntax for
both data manipulation via dplyr and visualization via ggplot2.

Computational biologists often must code their own sets of instructions for processing data using
scripts or tools. In computational biology, a script often refers to a lightweight single-�le program
written in an interpreted programming language and developed to perform a speci�c task. Scripts are
quick to edit and can be run interactively but at the expense of computational performance. To
automate instructions in HPC clusters, shell scripts are commonly used. For other purposes, the most
widely used scripting languages are Python [16] and R [18], but Perl [19], MATLAB [20], and Julia [21]
are preferred by some researchers for bioinformatics, systems biology, and statistics, respectively. A
computational biology tool, on the other hand, is a more complex program designed to tackle
computationally intensive problems like developing new algorithms. Several tools devised for data-
intensive biology have been written in compiled languages such as C/C++ [22]. In recent years,
however, scientists have been turning to Rust [23] due to its speed, memory safety, and active
community [64]. When computational performance is less of a concern, Python and R are suitable
alternatives for computational biology tool development.

Biological data processing is rarely a one-step process. To go from raw data to useful insights, several
steps need to be taken in a speci�c order, accompanied by a plethora of decisions regarding
parameters. Computational biologists have addressed this need by embracing work�ow management
systems to automate data analysis pipelines. A pipeline can be a shell script where commands are
written sequentially, using shell variables and scripting syntax when needed. Although e�ective, this
approach provides little control over the work�ow and lacks features to run isolated parts of the
pipeline or track changes of input and output �les. To overcome these limitations, a shell script can be
upgraded using the GNU Make [24] program, which was originally designed to automate compilation
and installation of software, but is �exible enough to build work�ows. More sophisticated
bioinformatics work�ow managers have also been developed such as Snakemake [25] based on
Python and Next�ow [26] based on Groovy (a programming language for the Java virtual machine).
These tools o�er support for environment managers and software containers (discussed in Level 3),

as well as allow for easy scaling of pipelines to both traditional HPC and modern cloud environments.
Alternatively, there are available declarative standards to de�ne work�ows in a portable and human-
readable manner such as the Common Work�ow Language (CWL) [27] and Work�ow Description
Language (WDL, pronounced “widdle”) [28], used by the cloud computing platform AnVIL [65,66].
Although these are not executable, they can be run in CWL- or DWL-enabled engines such as
Cromwell [67].

Step 2: De�ne your project structure

The next step after choosing your programming languages but before starting coding is to develop an
organized project structure. The project design should be intentional and tailored to the present and
future needs of your project—remember to be kind to your future self! A computational biology
project requires, at the very least, a folder structure that supports code, data, and documentation.
Although tempting, cramming various �le types into one unique folder is unsustainable. Instead,
separate �les into di�erent folders and subfolders, if needed. To simplify this process, base your
project structure on research templates available o�-the-rack. For data science projects, the Python
package Cookiecutter Data Science [29] decreases the e�ort to minimal. Running the package
prompts a questionnaire in the terminal where you can input the project name, authors, and other
basic information. Then, the program generates a folder structure to store data—raw and processed
—separate from notebooks and source code, as well as pre-made �les for documentation such as a
readme, a docs folder, and a license. Similarly, the Reproducible Research Project Initialization (rr-init)
o�ers a template folder structure that can be cloned from a GitHub repository and modi�ed by the
user [30]. Although rr-init is slightly simpler, both follow an akin philosophy aimed at research
correctness and reproducibility [68]. For work�ow automation projects, we advise following the
Snakemake work�ow template [31,69], storing each work�ow in a dedicated folder divided into
subfolders for work�ow-related �les, results, and con�guration. In all cases, the folder must be
initialized as a git repo for version control (see Step 4).

The software and dependencies needed to execute a tool or work�ow are also part of the project
structure itself. The intricacies of software installation and dependency management should not be
underestimated. Fortunately, package and virtual environment managers signi�cantly reduce this
burden. A package manager is a system that automates the installation, upgrading, con�guration, and
removal of community-developed programs. A virtual environment manager is a tool that generates
isolated environments where programs and dependencies are installed independently from other
environments or the default operating system. Once a virtual environment is activated, a package
manager can be used to install third-party programs. We believe that every computational biology
project must start with its own virtual environment to boost reproducibility: environments save the
project’s dependencies and can restore them at will so the code can be run on any other computer.
There are multiple options for both package and virtual environment management—some language-
speci�c and some language-agnostic. If you are working with Python, you can initialize a Python
environment using virtualenv [32] (where di�erent Python versions can be installed). Inside the
environment, you can use the Python package manager pip [35] to import Python code from the
Python Package Index (PyPI) repository, GitHub, or locally. For the R language, R-speci�c environments
can be created using renv [33], where packages can be installed via the install.packages function from
the Comprehensive R Archive Network (CRAN) and CRAN-like repositories. R also has BiocManager to
install packages from the Bioconductor repository, which contains relevant software for high-
throughput genomic sequencing analysis. Additionally, RStudio Package Manager [37] works with
third-party code available in CRAN, Bioconductor, GitHub, or locally. Conda [34]—a language-agnostic
alternative—supports program installation from the Anaconda repository, which contains the channel
Bioconda [70] speci�cally tailored to bioinformatics software. Python dependencies can also be
installed via pip inside a Conda environment. Conda is particularly helpful when working with third-
party code in various languages—a common predicament in computational biology. The Conda
package and environment manager is included in both the Anaconda and Miniconda distributions.

The latter is a minimal version of Anaconda, containing only Conda, Python, and a few useful
packages.

Step 3: Choose your working set-up

Before coding, a more practical question needs to be answered �rst: Where to code? The simplest
tools available for this purpose are text editors. Since writing code is ultimately writing text, any tool
where characters can be typed ful�lls this purpose. However, coding can be streamlined by additional
features—including syntax highlight, indentation, and auto-completion—available in code editors
such as Atom [38], Sublime [39], Visual Studio Code [40], and Notepad++ [41] (Windows only).
Command-line text editors such as Vim [42] and Emacs [43] are also suitable options for coding.
These tools share the advantage of being language agnostic, which is handy for the polyglot
computational biologist.

In addition to text editors, integrated development environments (IDEs) are also popular options for
coding. In their essence, IDEs are supercharged text editors comprising a code editor (with syntax
highlight, indentation, and suggestions), a debugger, a folder structure, and a way to execute your
code (a compiler or interpreter). Some IDEs are not language-agnostic, often only allowing code in one
language. The array of features also comes at a cost—IDEs typically use more memory. For Python,
Jupyter Lab [44], Spyder [46], and PyCharm [45] are popular options, while for R, RStudio [47] is the
gold standard. Notably, the di�erences between an IDE and a code editor are somewhat blurry,
particularly when employing plugins with a code editor.

In recent years, notebooks have acquired relevance in computational biology research. A notebook is
an interactive application that combines live code (read-print-eval loop or REPL), narrative, equations,
and visualizations, internally stored using a format called JavaScript Object Notation (JSON). Common
notebooks use interpreted languages such as Python or R, and narrative usually uses Markdown—a
lightweight markup language. Data analysis greatly bene�ts from using notebooks instead of plain
text editors or even IDEs. The combination of visuals and texts allows researchers to tell compelling
stories about their data, and the interactivity of its code enables quick testing of di�erent strategies.
Jupyter [44] is a popular web-based interactive notebook developed originally for Python coding but
also accepts R and other programming languages upon installation of their kernels—the computing
engine that executes the notebook’s live code under the hood. Jupyter notebook can also be executed
in the cloud using platforms such as Google CoLaboratory (CoLab) [71] and Amazon WebServices,
taking advantage of the current trend of cloud computing. In addition, RStudio allows the generation
of R-based notebooks known as R Markdown [48], which is especially well suited for generating data
analysis reports.

Step 4: Follow good coding practices

With the foundation in place, the next step is to start writing code. Coding, however, requires good
practices to ensure correctness, sustainability, and reproducibility for you, your future self, your
collaborators, and the whole community. First and foremost, you need to make sure your code works
correctly. In computational biology, correctness implies biological and statistical soundness. Although
both are topics beyond the scope of this manuscript, a useful approach to evaluate biological
correctness is to design positive and negative controls in your program, analysis, or work�ow. In
scienti�c experimentation, a positive control is a control group that is expected to produce results; a
negative control is expected to produce no results. The same approach can be applied to
computation, using input data whose output is previously known. Biological soundness can also be
tested by quickly assessing expected orders of magnitude in both intermediate and �nal �les. These
checks can be packaged in unit testing (discussed in Level 2).

In addition to correctly functioning code, code appearance, also known as coding style, is important.
Code style includes a series of small, ubiquitous decisions regarding where and how to add
comments; indentation and white-space usage; variable, function, and class naming; and overall code
organization. Although, as in writing, personality and preference di�erences dictate how you code,
coding style rules facilitate collaboration with your future self and others. Indeed, as we sometimes
have trouble reading our own handwriting, we can also struggle reading our own code if we disregard
guidelines. At the very least, aim to follow internal consistency in writing code. Even better, consider
following any of the multiple published coding-style guides such as those from software development
teams. Google, for example, has guidelines for Python, R, Shell, C++, and HTML/CSS [50]. Guidelines
for Python are available as part of the Python Enhancement Proposal (PEP), known as PEP 8 [49]. To
facilitate compliance, tools called linters can be incorporated into most code editors and IDEs to �ag
stylistic errors in your code based on a given style guide. Furthermore, many editors and tools
perform automatic code formatting (e.g., Black [51] that formats Python code to be PEP 8 compliant),
which can greatly facilitate stylistic coherence in a collaborative project. In the case of Snakemake
�les, stylistic errors can be �agged using the Snakemake linter, which can be invoked with the
command snakemake –lint [72], or automatically corrected with the tool Snakefmt [52], based on
Black.

On the matter of code styling, two topics merit additional attention: variable naming and comments.
Variable names should be descriptive enough to convey information about the variable, function, or
class content and use. The goal is to produce self-documented code that reads close to plain English.
To do so, multi-word variable names should be used if necessary. In such cases, the most common
conventions include Camel Case, where the second and subsequent words are capitalized
(camelCase); Pascal Case, where all words are capitalized (PascalCase); and Snake Case, where words
are separated by underscores (snake_case). Notably, these conventions can be used in the same
coding style to di�erentiate variables, functions, and classes. For example, PEP-8 recommends Snake
Case for functions and variables and Pascal Case for class names. As most modern code editors and
IDEs provide autocompletion of variable, function, and class names, it is no longer a valid excuse to
use cryptic one-character variable names (e.g., x, y, z) to save a few keystrokes.

In addition to mastering variable naming, code comments—explanatory human-readable statements
not evaluated by the program—are necessary to enhance the code’s readability. No matter how
beautiful and well-organized your code is, high-level code decisions will not be obvious unless stated.
As a corollary, code explanations that can be deduced from the syntax itself should be omitted.
Comments can span a single line or several lines, and can be found in three strategic parts: at the top
of the program �le (header comment), which describes what the code accomplishes and sometimes
the code’s author/date; above every function (function header), which contains the purpose and
behavior of the function; and in line, next to di�cult code with behavior that is not obvious or
warrants a remark.

Code-styling rules also apply to data science notebooks. However, when writing notebooks, you must
also engage in literate programming—a programming paradigm where the code is accompanied by a
human-readable explanation of its logic and purpose. In other words, notebooks must tell a story
about the analysis, connecting the dots between the code, the results, and the �gures. Human-
readable language is often written in Markdown [53] when working in Jupyter, or R Markdown [48]
when working in R. Little has been written about good practices for literate programming, but our
suggested good practices are to include the purpose and interpretation of results for each section of
code.

When working with a sizable codebase, we advise modular programming—the practice of subdividing
a computer program into independent and interchangeable sub-programs, each one tackling a
speci�c functionality. Modularity enhances code readability and reusability, as well as expedites
testing and maintenance. In practice, modularity can be implemented at di�erent levels, from using

functions within a single-�le program to separating functionalities into di�erent �les in a more
complex tool. In Python, subdivisions are de�ned as follows: modules are a collection of functions and
global variables, packages are a collection of modules, libraries are a collection of packages, and
frameworks are a collection of libraries. Modules are �les with .py extension, while packages are
folders that contain several .py �les, including one called init.py which can be empty or not and allows
the Python interpreter to recognize a package.

Finally, there is version control, one of the most important personal practices. Version control entails
tracking and managing changes in your code. A popular version-control system is Git [54], which
requires a folder to be initiated as a Git repository, after which changes to any of the �les inside would
be tracked. File modi�cations must be staged (using git add) and then committed (using git commit).
The commit will serve as a screenshot of your project at that time and stage, which you can review or
recover later (using git checkout). Additionally, version control allows you to satry new functions in
branches (using git branch and git checkout)—independent carbon copies of the main original branch
(known as main) that you can optionally merge back to the original copy. Currently, there are multiple
hosting services that provide online storage of Git repositories, such as GitHub [55], GitLab [56], or
Bitbucket [57], that users can navigate using the web browser or via a graphic user interface (GUI)
such as GitHub Desktop [58] or GitKraken [59]. These platforms have the additional bene�t of backing
up your code in the cloud, keeping your work safe and shareable, which is especially relevant for
collaboration.

Level 2: Collaboration

Collaboration is a key aspect of scienti�c research, but it is especially relevant in computational
biology, where interdisciplinary knowledge is often needed. Although collaborators can have a wide
range of involvement with your project, here we will consider individuals that share a direct
relationship with you and your research. Each type of collaboration requires its own set of good
practices, which will be covered in the next paragraphs.

2.1 Share code

Sharing code is one of the most common practices in software development, where large teams work
together to develop complex functions and scripts. Although computational biology projects are
usually not as big, proper sharing code is still essential. Hosting services, such as GitHub [55], GitLab
[56], and Bitbucket [57] (Table 2), allow for a Git repository to be stored online by creating a copy of
the repository known as the remote, which becomes the o�cial version of the repository. The key
advantage of using a remote is that there will be no direct interaction between di�erent local copies
of the repository, also known as clones; instead, each clone will interact with the remote exclusively,
updating only if no con�icts between the two exist. This way, if a collaborator updates the remote
repository, other collaborators will not be able to send their changes until they update their local
copy.

Table 2: Tools for collaborative research.

Goal Tools

Share code

• Hosting services: GitHub [55], GitLab [56], Bitbucket [57].
• Git branching strategies: GitHub �ow [73].
• Tests: correctness (e.g. pytest [74], testthat [75]), style (e.g. �ake8 [76]), vulnerabilities
(e.g. Safety [77]), coverage (e.g. codecov [78]).
• Continous integration: tox [79], Travis CI [80], Circle CI [81], Github Actions [82]).
• Code reviews: Github [83], Crucible [84], Upsource [85].

Goal Tools

Share data
• FAIR principles [4]: FAIRshake [86].
• Tidy data [87].
• Data version control [88].

Share data science
notebooks

• Static: GitHub [55], GitLab [56], NBviewer [89].
• Interactive: Binder [90], Google CoLab [71].
• Comparative: nbdime [91], ReviewNB [92].

Share work�ows
• General hosting services: GitHub [55], GitLab [56], Bitbucket [57].
• Dedicated work�ow repositories: Snakemake Work�ow Catalog** [93] ,
Work�owHub [94].

Share manuscripts

• General-purpose word processors: Google Docs [95], O�ce 365 [96].
• Scholarly word processors: Authorea [97].
• Online applications supporting Markup Languages: Overleaf (LaTeX) [98], Manubot
(Markdown + GitHub) [99].

To guarantee that di�erent collaborators can work simultaneously in the same repository, it is best to
implement a branching strategy in the repository (Table 2). In a small team, the most common
strategy is to have a single main branch and generate branches from it that each di�erent developer
can work on. Then, whenever the developer is ready, they can request to combine—or merge—the
changes from their branch into the main branch. This occurs via a process known as pull request (PR).
Once a PR has been opened, collaborators can review, approve, and subsequently merge it into the
main branch, preserving the commit history. This branching strategy is sometimes referred to as
GitHub Flow [73] and will su�ce for most projects. For more complex branching systems, see Level 3.

Using Git hosting services for collaboration has many additional bene�ts. The commit history both
shows what was done at each point in time but also speci�es the collaborator who made the changes;
this allows users to take responsibility for their changes so that if, for example, a bug was introduced,
commands such as git blame can pinpoint the cause. To ensure bugs can be easily tracked, descriptive
commit messages that follow a standard are recommended [100,101]. Git hosting services can be
accessed interactively online or from the terminal with tools such as GitHub CLI [102]. Finally, Git
hosting services also allow collaborators to open issues [103] for listing pending tasks and/or asking
questions, acting as an open forum for development discussions, which has the advantage of
remaining accessible for the future (as opposed to closed email discussions).

Another important concept to consider when developing code, especially with other collaborators, is
to develop tests, meaning scripts that will run to �nd errors in the code (Table 2). Tests can be
executed at di�erent levels, from the individual units/components to the system/software as a whole
[104]. Unit tests, in particular, are used to determine if speci�c modules/functions work as intended
within the codebase so that if later the function grows in scope, its proper basic functioning is
ensured. For instance, if a function was de�ned for adding numbers, a simple test would be to assess
if the function outputs 13 when the inputs 6 and 7 are provided. Besides unit tests, computational
biology projects can bene�t from implementing integration tests to evaluate the correct interaction
between di�erent modules and smoke tests to indicate if any core functionality has been impacted.
Test runners, such as pytest [74] for Python and testthat [75] for R, exist to facilitate incorporating
tests to the codebase. It is good practice to develop tests at the same time you develop code, as
adding tests a posteriori is signi�cantly harder. It is an even better practice to test every single step of
the code (from data loading to �gure plotting), a concept known in software development as end-to-
end testing [105].

Going beyond testing correctness, �ake8 [76] will test styling preferences (for complying with PEP8),
Safety [77] will test for vulnerabilities among the software’s dependencies, and Codecov [78] will test
coverage, or the percentage of the codebase tested. As a rule of thumb for testing coverage, the more
lines of code tested, the more reliable the software will be. Di�erent types of tests can be funneled

into a single testing pipeline—in a process known as continuous integration (CI)—that can be tuned to
run locally whenever commits are made, or online whenever a pull request is opened and/or merged.
When running locally, an environment manager/command-line tool, such as tox [79], can help to
ensure all tests are executed under di�erent Python versions. Di�erent tools, such as Travis CI [80] or
Circle CI [81], can be used to set up the CI cycle online. More recently, GitHub Actions [82] was
developed to run integrations directly from GitHub.

Having tests is a great way to ensure that code ful�lls a certain level of correctness and styling.
However, it is no replacement for human assessment to determine if the code is correct, necessary,
and useful. Therefore, peer code review is essential whenever developing code in collaboration (Table
2). While tools, such as Crucible [84] and Upsource [85], exist for making in-line reviews of each �le,
the most common approach is for you and/or others to directly review the code using the online
review tools provided by various hosting services. In the case of GitHub [83], this not only allows the
reviewer to open a comment in any line of the code, which creates a thread for the original author to
reply but also to suggest changes that can be approved or dismissed. Reviewers can assess many
features of the code, from functionality to documentation, while also following good practices, such as
using constructive phrasing, which is outside of the scope of this review but presented in detail
elsewhere [106,107].

2.2 Share data

The practices of sharing data are similar to sharing code: we should store our datasets, and any
changes to them, in a repository and ensure it complies with standards by testing its quality. However,
since data has a more consistent structure than code, often existing in standard formats, we should
consider additional criteria when sharing it with collaborators (and later with the community). The
main set of guidelines that represent these criteria was outlined in what is known as the FAIR
principles [4]: data should be Findable (easy to locate online); Accessible (easy to access once found);
Interoperable (easy to integrate with other data/applications/work�ows/etc); and Reusable (presented
in a way that allows for others to use it for the same or di�erent purposes). Tools like FAIRshake [86]
can be used to determine if data �ts FAIR criteria.

For making data �ndable, research repositories such as Zenodo [108] and Figshare [109] allow you to
assign a digital object identi�er (DOI) to any group of �les you upload, including data and/or code.
Alternatively, regular code repositories like GitHub can be used instead, as you can employ commits
and/or releases to identify speci�c versions of the data, in combination with extensions for Large File
Storage (LFS), such as git LFS [110], in the case of data �les larger than 100 MB [111]. GitHub can also
integrate with Zenodo to automatically archive repositories and assign them a DOI. A �nal alternative
is the Data Version Control (DVC) initiative [88], which is especially useful when performing machine
learning, as it can keep track of data, machine learning models, and even scoring metrics.

For making data accessible, we encourage as much as possible to make your repositories open
access. In cases in which you or your collaborators prefer some restrictions, you can create guest
accounts to provide access to private repositories. For making data interoperable, distinctions
between raw and clean data have been made [68], with raw data being the �les that came out of the
measuring device, and clean data representing the �les that are ready to be used for any
computational analysis. An important characteristic that clean data should have is to be tidy, which is
reviewed in detail elsewhere [87]. Finally, for making data reusable, thorough documentation of the
data is required, including experimental design, measurement units, and possible sources of error.

2.3 Share data science notebooks

Jupyter Notebooks have become a fundamental tool for data analysis, which can be shared with
collaborators using either static or interactive options. The former shares computational notebooks as
rendered text, written internally in HTML. Static notebooks are a good option when you want to avoid
any modi�cations and can work as an archive of past analyses, although interacting with its content is
cumbersome—the �le must be downloaded and run in a local Jupyter installation. Git-based code
repositories, such as GitHub [55] and GitLab [56], automatically render notebooks that can be later
shared using the repository’s URL. To facilitate this process, Project Jupyter provides a web application
called NBviewer [112], where you can paste a Jupyter Notebook’s URL, publicly hosted in GitHub or
elsewhere, and renders the �le into a static HTML web page with a stable link.

Interactive notebooks, on the other hand, not only render the �le but also allow collaborators to fully
interact with it, tinkering with parameters or trying new input data—no installation required. Binder
Project [90] enables users to fully interact with any notebook within a publicly-hosted Git-based
repository via a Jupyter Notebook interface, although changes will not be saved to the original �le. The
platform supports Python and R, among other languages, and additional packages required to run the
analysis need to be speci�ed in a con�guration �le within the repository. Similarly, Jupyter Notebooks
can be run interactively using Google CoLab [71] by anyone with a Google account. Notebooks can be
updated locally, from any public GitHub repository, or from Google Drive. As an added bonus, Google
CoLab notebooks can be edited by multiple developers in real-time. In both cases, the machines
provided by these services are comparable to a modern laptop, hence these tools may not be suitable
for computing-intensive tasks.

Notebooks should be treated like any other piece of code: updates from di�erent collaborators
should be managed with version control in a platform such as GitHub. The problem, however, is that
git and other version control systems use line-based di�erences that are not very well suited for the
internal JSON representation of Jupyter notebooks. The extension nbdime [91] can be installed locally
to enable content-aware di�ng and merging. Additionally, NBreview [92] can be integrated with
GitHub to enable content-aware di�ng, displaying the old and new versions of a notebook in parallel
to facilitate code review.

2.4 Share computational work�ows

Computational biology projects often demand using multi-step analyses with dozens of third-party
software and dependencies. Although these steps can be described in the documentation, complex
work�ows are better shared as stand-alone code that can be easily run with minimal �le manipulation
from collaborators. Doing so can safeguard the reproducibility and replicability of the analysis, leading
to better science and fewer challenges downstream.

The simplest way to share a pipeline is through a shell script that receives input �les via the command
line, allowing �exibility to run analyses with di�erent input data; however, shell scripts o�er little
control over the overall work�ow and cannot re-run speci�c parts of the pipeline. To address these
issues, pipelines are better shared using a work�ow automation system. Theoretically, all of the
instructions regarding the work�ow could be written in the main pipeline �le: in Snakemake, this
would be the .smk �le (or Snake�le); in Next�ow, te .nf �le; in CWL, the .cwl �le; and in WDL, the .wdl.
However, to ensure reproducibility, it is a good practice to share complete pipelines, meaning folder
structures, additional �les, and software speci�cations, as well as custom scripts developed for the
analysis. These �les can be shared using the same tools as code, namely GitHub or any other Git
hosting service. Alternatively, they can be uploaded to hosting services specialized in work�ows, like
Snakemake Work�ow Catalog [93] or Work�owHub [94], currently in beta.

When sharing work�ows, consider that sharing software versioning is necessary for your collaborators
to reproduce your pipeline using their own computing setup. Conda environments, for example, can
be easily created from an environment �le (in YAML language), which can be exported from an

existing environment. Notably, Snakemake and Nex�ow can be con�gured to automatically build
isolated environments for each rule or step, enabling the running of di�erent versions of a program
within the same pipeline, which is especially helpful when using both Python 2 and 3 in the same
pipeline, for example. In addition to sharing the speci�cations of an environment, it is possible to
share the environment itself via containers, which we will discuss in Level 3.

2.5 Write manuscripts collaboratively

Writing articles is the primary way we share our research with the scienti�c community at large.
However, writing manuscripts collaboratively comes with its challenges when using classical word
processing tools, often resulting in �les with di�erent names, jumping from one email inbox to
another, and contradictory �nal versions. The tools we suggest will help to avoid these issues.
Companies have become aware of the need for collaborative writing, developing online applications
that can be simultaneously edited by multiple people. Google Docs [95] and Microsoft O�ce 365 [96]
are well-known word processors designed for this purpose, with text displayed as it would appear as a
printout (known as What-You-See-Is-What-You-Get , or WYSIWYG) and formatting performed using
internal features of the application. These platforms are extremely user-friendly and require no
specialized knowledge making them a good option when collaborators seek simplicity. Although these
applications are not speci�cally tailored for scienti�c writing, third-party companies have developed
plugins enabling useful features, such as adding scienti�c references to your document (e.g.,
Paperpile and Zotero). Companies like Authorea [97] have developed online applications speci�cally
designed for writing manuscripts that o�er templates for di�erent types of research projects and
allow easy reference additions using identi�ers (DOI, PubMed, etc.).

In addition to word processors, text editors are a viable option to write manuscripts when combined
with a markup language—a human-readable computer language that uses tags to delineate
formatting elements in a document that will be later rendered. Since the formatting process is
internally handled by the application, styling elements (e.g., headers, text formatting, and equations)
are easily written in text, achieving greater consistency than word processors. Disciplines closely
related to computational biology, such as statistics and mathematics, have historically used the
markup language LaTeX for writing articles. This language has simple and speci�c syntax for
mathematical constructs making it a popular choice for papers with many equations. To aid
collaborative writing, platforms like Overleaf [98] provide online LaTeX editors, supporting features
like real-time editing. In addition to LaTeX, an emerging trend in collaborative writing uses the
lightweight markup language Markdown within the GitHub infrastructure. The software Manubot [99]
provides a set of functionalities to write scholarly articles within a GitHub repository, leveraging all the
advantages of Git version control and the GitHub hosting platform [113]. For example, it provides
cloud storage and version control. The GitHub user interface also allows o�ine manuscript
discussions using issues and task assignments (see Level 3 for tips on project management). Manubot,
in particular, accepts citations using manuscript identi�ers and automatically renders the article in
PDF, HTML, and Word .doc formats. As a drawback, it requires technical expertise in Git and familiarity
with GitHub; as an upside, its reliable infrastructure scales well to large and open collaborative
projects. The document you are reading now was fully written using Manubot!

Level 3: Community

The third and �nal step of this journey is presenting your research to the community. Your main goal
should be to share and maintain an open and reproducible project that can sustain community
engagement over time. In this section, we will distinguish three sub-goals to make your research: (1)
accessible, (2) reproducible, and (3) sustainable. The latter is especially relevant when your research
involves developing code that will be used by others in the future (e.g., a tool or work�ow), but we
believe that our recommendations are relevant to any computational biology project.

3.1. Make your research accessible

Making your research accessible includes ensuring that anyone can access your research long after
your paper is published. It is extremely frustrating for any researcher to look for software or a set of
scripts from a paper published a few years ago, only to �nd a “404 error” when accessing the source
weblink. Equally frustrating is when authors o�er code as “available upon reasonable request,” as this
often leads to dead-ends and unavailable code.

There are three main ways to publish accompanying code: the supplementary material of the
manuscript, privately-owned domains, or uploaded to public repositories. Publishing code as
supplementary material has low accessibility for non-open access papers. Moreover, the code will
remain completely static and cannot be updated with new features or to correct errors. Making code
available via privately-owned domains lacks sustainability, as it requires maintenance of the domain.
Therefore, in addition to providing the code as supplementary material and/or via private domains,
we recommend uploading it to public repositories, enabling open access and sustainability over time.
There are several hosting services for this purpose [55,56,57] (Table 3), all equally valid and typically
dependent on established practices in your speci�c �eld.

Table 3: Tools for making your research accessible.

Goal Tool options Additional remarks

Publish your code
• GitHub [55]
• GitLab [56]
• Bitbucket [57]

All three options allow you to host your repository
online for free. Choose whichever is more common in
your own �eld.

Introduce your
code

• README �le [114]: First �le that
shows up in a repository.

Provide a landing page to any repository with a short
overview of the code (installation, usage,
acknowledgments, etc).

Share your code • Several licensing options [115].
Indicate with a license �le what restrictions apply when
using your code. If you don’t include this, you will loose
many users.

Archive your code
• Github Releases [116]
• Zenodo [108]: Provides DOI.
• �gshare [109]: Provides DOI.

Share progressive stable versions of your code as you
develop it. Use semantic versioning [117] for
assigning standard identi�ers to your releases.

Publish a tool

• PyPI [118]: Python.
• CRAN [119]: R.
• Bioconductor [36]: R.
• Bioconda [70]: Language-agnostic.

Produce a package easy to install and use. Especially
useful if you think you could have a userbase that will
run the same analysis as you on other datasets and/or
conditions.

Publish an
interactive web
app

• Dash [120]: Python.
• R-Shiny [121]: R.

Provide easy and interactive data exploration to your
users. Especially useful if you have large datasets that
can be explored in di�erent ways.

When publishing your code in a public repository, two �les are fundamental to include: A readme �le
and a license. A readme �le [114] introduces users to the code (Table 3) and should include a
description of its main intended use, an overview of the installation, the most commonly-used
commands, contact information of the developers, and acknowledgments, if appropriate. We
recommend keeping the readme �le short and written in a markup language such as Markdown [122]
or reStructuredText [123] that will render automatically on the repository’s landing page, below the
repository �le structure.

Adding a license to a repository is also a crucial step (Table 3). Licenses indicate how the code can be
used: Is it free to use for any application? Can users modify the code as they please? Does it come with
a warranty that it will work? Can it be used for pro�t? If no license information is provided,
researchers might assume that the code is free to use but copyright law in fact prohibits use without

explicit permission by the copyright holder [124]. Many options exist for licensing code [115], from
permissive licenses that allow any kind of use with few or no conditions, like the Unlicense and MIT
licenses, to more restrictive licenses that enforce disclosing the source and requiring that any
adaptation of the code uses the same license, like the GNU licenses. When deciding on a license, as a
rule of thumb, consider that the more requirements you add, the fewer potential users you will have,
but the more credit you will receive when users utilize your code for their own needs. Academic
researchers must also consider what open-source licenses their university supports, as in many cases
it will be the university that owns the copyrights.

As a computational biologist, you will likely continue lines of work from scripts or software you have
already published. For instance, you could improve the performance of a given function or add a new
set of features entirely. Therefore, you should not only be interested in making your code accessible
but also in having di�erent versions available. Creating and archiving successive releases of your code
(Table 3) allows the organization of di�erent versions of your code as you develop them. GitHub
Releases [116] is one way to maintain versions with minimal e�ort. Research repositories, such as
Zenodo [108] or Figshare [109], not only store your code, notebooks, and data, but also provide a DOI
for each version allowing it to be included as a citation in a manuscript. This is especially useful when
the publication is not available yet or the current version of the code di�ers widely from what was
published. Research repositories can be combined with code repositories; for example, GitHub has a
Zenodo integration that will trigger a new archived version every time a new version is released.
Regardless of the solution, we recommend keeping logical order to the releases, using a standard
such as semantic versioning [117].

In most cases, providing your code as an organized set of scripts and/or notebooks is su�cient for
anyone to consult if they wish to reproduce and/or re-utilize it. However, if your code might be used
routinely by other researchers, for instance for studying other organisms or other experimental
conditions, consider packaging your code as a tool (Table 3) and publishing through a software
repository such as Bioconda [70], PyPI [118] if written for Python, or CRAN [119] and Bioconductor
[36] if written for R. These increase your possible userbase, as published packages are searchable and
can be installed locally with minimal e�ort.

To increase the accessibility of results to users, an interactive web app or data dashboard can be
developed (Table 3). Such apps allow users to interact with data by displaying di�erent sets of
variables or changing parameter settings (e.g., the signi�cance of a statistical test). Common options
for this goal are Dash [120] for Python, R, and Julia, and Shiny [121] for R. Both platforms can include
interactive graphics generated with plotly data visualization libraries [125].

3.2. Make your research reproducible

In addition to having accessible code/data, you also need to ensure anyone can execute your code
and obtain the same results. This is especially relevant in computational biology where users will
come from di�erent backgrounds and experience. A cornerstone for reproducibility is documentation
that explains how the code functions and how to practically achieve your same results. We have
distinguished four levels of documentation [126]:

Tutorials: A group of lessons that teach the reader how to become a user of your code;
How-to guides: A set of documents that clarify how to solve common problems/tasks;
Explanations: Discussions that clarify particular topics related to your code;
References: Technical descriptions of your code’s variables/classes/functions.

The extent of required documentation will depend on the number of expected users and, relatedly,
can a�ect how many users you attract. If you foresee that your code has little usability outside of your
own research, documenting each function using docstrings [127] might be su�cient. However, if you

aim for a broader userbase, you might want to add a tutorial for beginners, how-to guides for
frequently used routines, and explanations for clarifying the science behind your code, which can be
re-used in a manuscript. To publish comprehensive documentation online, consider using (1) a
standard documentation language such as reStructuredText [123] or Markdown [122], and (2) a
documentation platform such as Readthedocs [128], Gitbook [129], or Bookdown [130] (Table 4).
Alternatively, you can use a service like GitHub Pages [131] to host the documentation on a dedicated
website.

Table 4: Tools for making your research reproducible.

Goal Tool options Additional remarks

Document your
code

• Readthedocs [128]: Uses reStructuredText
[123].
• Gitbook [129]: Uses Markdown [122].
• Bookdown [130]: Uses R Markdown [48].
• Github Pages [131]: Separate website.

Comprehensive documentation: from
tutorials and how-to guides all the way
down to function documentation based on
all compiled docstrings [127].

Reproducible
environments

• Virtual environment managers: See Table 1.
• pip-tools [132]: Administer several
environments in a single project.

As a recommendation, try having the
minimum number of dependencies needed
to reproduce your results.

Reproducible
software

• Docker [133]
• Singularity [134]

Package your research as a container ready
to run in any computer.

Reproducible
commands • Make [24] Build a program by following a series of

steps in a single Make�le.

Reproducible
work�ows • Work�ow management systems: See Table 1. Run a pipeline of commands on NGS data

in a reproducible way.

Reproducible
notebooks • Interactive notebooks: See Table 2. Make your notebooks interactive and

reproducible.

Another key aspect of reproducibility is software and dependencies installation. To facilitate this
process, you can (1) provide con�guration instructions, (2) share dependencies with a virtual
environment manager, or (3) share a runtime environment as a container. When setting up software
from instructions, it is necessary to ensure the user follows a series of sequential commands in a
speci�c order. To automate this process, Linux systems provide the tool GNU Make [24]. Virtual
environment managers handle dependencies and facilitate software installation by building virtual
environments from requirements �les. To achieve repeatable environments, however, it is
recommended to include the speci�c version of software and libraries, a practice known as
dependency pinning. Tools such as pip-tools [132] allow to de�ne di�erent Python environments for a
single project depending on the type of user (e.g., end-user versus developer).

Beyond dependency trackers, we recommend ensuring your tool functions as expected across
computing infrastructures, even between two di�erent operating systems (e.g., Mac and Windows).
This can be achieved via containerization, also known as lightweight virtualization (Table 4).
Containers are standardized software that packages an entire runtime environment, meaning
everything needed to run your tool: code, dependencies, system libraries and binaries, environmental
variables, settings, etc. Instructions for deploying containers are stored in read-only templates called
images. Two free tools available for creating containers from images are Docker [133] and Singularity
[134]. While Docker is the most popular framework for containerization [60], HPC clusters with
shared �lesystems favor Singularity due to security issues. In most cases, this is not a problem, since
Singularity is compatible with all Docker images.

3.3. Make your research sustainable

Now that your research can be accessed and reproduced by anyone, the �nal step is to sustain this
over time—also known as code maintenance. This is especially relevant if you continue to develop
tools by integrating new features requested by users, which can foster a strong community over time.
However, even in the case in which your research is a self-contained project, it is important to ensure
that the user community can contact you, in case bugs are discovered or parts of your code
malfunction due to dependency updates (part of the “software rot” phenomenon [135]). In the
following section, we review useful techniques for making your code/software/research sustainable
over time.

You can employ a variety of tools to communicate with users, depending on the size of your user base
and the scope of questions/comments received (Table 5). For smaller projects, a single-channel
solution like Gitter [136] o�ers a simple way for anyone in the community to ask questions and the
developers to answer in threads. For larger projects, however, it could become unmanageable to have
all discussions in the same channel, so a multiple-channel solution (i.e., forums), such as Google
groups [137] is better suited. GitHub also allows issues to be opened, where collaborators or users
can inform developers about bugs or ask questions. Additionally, GitHub recently introduced
discussions [138] to maintain questions organized in di�erent threads.

Table 5: Tools for making your research sustainable.

Goal Tool options Additional remarks

Tell users how to
contact you

• Speci�c/shorter questions: Gitter
[136].
• Larger issues / how-to’s: Google
groups [137], GitHub Discussions
[138].

Provide ways for users to contact you for questions,
requests, etc. Remember to visit them periodically!

Track to-do’s in your
research • Github Issues [139] Detail speci�c pending to-do’s in your research / allow

others to request changes and/or highlight bugs.

Encourage user
contributions

• Contribution guidelines [140]:
How to open issues / contribute code.
• Github Wikis [141]: More speci�c
how-to guides.

Provide as much information as you can to guide your
users. You can also include administrator guidelines.

Foster a respectful
community

• Smaller projects: Contributor
Covenant [142].
• Larger projects: Citizen Code of
Conduct [143].

Essential when you would like researchers to
contribute code.

Branch your repo
sustainably • Git�ow [144]

Useful when several developers contribute code to
the project. Allows users to get access to stable
versions of your research in an ongoing project.

Keep track of your
issues

• Kanban �owcharts [145]: Github
Projects [146], GitKraken Boards
[147].
• Scrum practices [148]: Zenhub
[149], Jira [150].

Keep track of your pending tasks in di�erent projects
with Agile [151] software development practices.
Especially useful if your research is split in many
di�erent repositories, each with multiple
features/�xes to do.

Automate your repo
• bump2version [152]: Easier
releasing.
• Danger-CI [153]: Easier reviewing.

Do less, script more!

Now that users know where to contact you, ensure you have developed contribution guidelines [140]
(Table 5), detailing how users should (1) open issues and (2) contribute with their own code changes
via PRs. These guidelines are intended for new users/contributors, so should be written in the style of
a how-to guide; however, they may also include additional instructions for the main developers or the
administrator of the repository. Alternatively, the detailed guidelines can be included in a
supplemental wiki, which hosting services o�er as part of the repository [141]. Equally important is a

code of conduct (Table 5), which includes expectations on how users should behave in the repository
and consequences when someone does not comply, promoting a respectful community. Several code-
of-conduct templates exist, such as the Contributor Covenant [142] for smaller projects and the
Citizen Code of Conduct [143] for larger projects.

Finally, consistent development and maintenance of your software as it grows in scope and number of
users will ensure the sustainability of your project. Tools that aid in this include:

1. Branching System: When many developers are involved in a project, more advanced branching
methods, such as GitFlow [144], ensure that users can access functional versions of your code
while you work on it. (Table 5). Brie�y, GitFlow includes two branches with an in�nite lifetime: the
main and the development (often named as devel). New branches will be based on the
development branch, leaving the main one for stable versions of the code. Every time the
development branch is merged into the main branch, a version release is created.

2. Project Management: Tools exist to track, organize, and prioritize user issues (Table 5), all based on
Agile [151] principles. The simplest approach is implementing a Kanban board [145] (as found in
GitHub Projects [146] or GitKraken Boards [147]), where issues are organized in columns that
clearly layout the current state of a given task. For larger projects comprising multiple collaborators
and/or repositories, a more structured approach, such as a Scrum framework [148] (as
implemented by Zenhub [149] and Jira [150]), allows you to prioritize issues by setting milestones
and estimating di�culties.

3. Additional Automation: As your project develops, you will �nd that many aspects can be automated
to improve e�ciency. bump2version [152] ensures all sections of your code get updated with the
new release. Danger-CI [153] and git hooks [154] ensure contributors comply with certain
standards in their pull requests. If you are no longer actively maintaining a project, you can use CI
(e.g. GitHub Actions [82]) to schedule regular tests to discover if your tool/code starts
malfunctioning due to software rot and/or dependency issues. Finally, we advise against
implementing too many automation tools at the start of a project, but adding them as needed. If
you �nd yourself routinely performing a task, consider automating it.

Case Studies

We will now exemplify the e�ective use of the introduced tools by presenting three di�erent
computational biology projects from the literature (Figure 2) (two more cases are presented in the
Supplementary Material). Note that our list of projects is not meant to be comprehensive, but rather
is intended to be a short overview of how projects in computational biology bene�t from robust tools
and software development practices. Additionally, it will be evident that there is considerable
redundancy in chosen tools across case studies. For instance, all projects include an environment
manager such as Conda, and a version control system like Git. This redundancy is intentional as it
highlights the ubiquity of some tools.

Figure 2: Examples of computational biology projects and associated depending on the nature of the research and the
number of people involved.

Case study 1: Genomic variant detection in a large cohort

The availability and a�ordability of NGS allow for the routine assessment of dozens to thousands of
genomes. Resequencing experiments enable the discovery and genotyping of genomic variation
within large cohorts to answer key questions regarding population history and susceptibility to
disease. For this example, let’s consider a project including whole-genome Illumina sequencing and
variant identi�cation in thousands of individuals such as Aganezov et al. [155]. Herein, the challenge
resides in applying a multi-step variant-calling pipeline on many samples in a reproducible manner.

In this particular project, the authors utilized the AnVIL cloud computing platform [65,66], which uses
WDL for work�ow description. However, if you have access to an HPC cluster, then a project of this
nature can be performed using the work�ow automation tool Snakemake [25], employing Python to
parse sample names and perform other data handling operations, and following Snakemake work�ow
template [31] for folder structure. A Conda [34] environment can hold all necessary software since a
wide array of software designed for genomic analyses is available via the Bioconda [70] repository.
Coding the work�ow can be done in any text editor that o�ers easy integration with Git tracking and
hosting, such as Visual Studio Code [40]. For code styling, you can run Snakefmt [52] to follow best
practices.

A project of this magnitude usually requires collaborators from other research groups. The pipelines
and scripts can be shared using a GitHub repository [55]. If privacy is a concern, the repository can be
set as private and made public in later stages of the project. To write the manuscript, general-purpose
word processors such as Google Docs [95] would su�ce. Considering that these types of data are a
valuable resource for the community, FAIR principles [4] for data sharing should be followed. In
addition to uploading the raw data in a public repository like the European Nucleotide Archive (ENA)
or the National Center for Biotechnology Information (NCBI), we encourage open sharing of your code
and notebooks in a GitHub repository archived in Zenodo [108] with a DOI.

Case study 2: Single-cell (sc)RNA-seq data integration

scRNA-seq is a rapidly evolving technology that has enabled the study of cell heterogeneity and
developmental changes of a cell lineage, otherwise intractable with bulk RNA-seq. Current scRNA-seq
experiments deliver the transcriptomic pro�les of thousands to millions of cells [156], making them a
suitable target for machine- or deep-learning approaches. Among the many challenges imposed by
this technology, integration of scRNA-seq datasets is key, especially in case-control studies where cell
types should be functionally matched across datasets before evaluating di�erences across conditions.
For this case study, we will consider the development of an unsupervised deep-learning method for
data integration as described in Johansen and Quon [157].

This kind of project often uses a combination of Python, R, and shell scripting. Python can be used to
write and train deep-learning models with TensorFlow [158] or PyTorch [159] libraries. R enables
straightforward data pre-processing with tools such as Seurat [160,161]. Shell scripting can process
large-scale raw data �les in HPC clusters. Additionally, we advise using Python’s reticulate library [162]
to incorporate Python tools into the existing R ecosystem. To set up your working directory, we
recommend a structure like Cookiecutter Data Science [29], which includes separate folders for
trained models and other components of a deep-learning project. To establish a software
environment, Python virtual environments, such as virtualenv [32], work well with Tensor�ow and
PyTorch. Coding can be performed in any general-purpose text editor, such as Visual Studio Code
[40], where updates can be easily pushed/pulled to/from GitHub. As a good practice, maintain

modular, properly-commented code and name �les with data stamps and model parameters to
facilitate revisiting projects. Additionally, take advantage of tools such as TensorBoard [163] to
diagnose, visualize, and experiment with your models.

When working with collaborators, code should be shared through a Git hosting service like GitHub.
When multiple users need to edit the code in real-time, Google CoLab [71] o�ers interactive coding
and GPU access. In addition to the code repository, a Manubot [99] can be created to write the
manuscript collaboratively. To make your tool accessible to a larger community, publish it to a public
GitHub and include a readme [114] and an appropriate license �le [115]. Considering that most users
in the �eld use R, you can go one step further and share your code as a Bioconductor package [36],
making sure your method can be called directly in R and that interacts with standard data structures
in the �eld. For better reproducibility, document your method including example tutorials in a
platform like ReadTheDocs [128], and share the software environment needed to deploy the models
as a Docker image [133]. GitHub issues [139] and Bioconductor forums [164] are suitable platforms
to promptly reply to users’ questions, bug reports, and requests for code enhancements.

Case study 3: Tool development for constraint-based modeling

The last case study we will present is related to constraint-based modeling, a common approach used
for simulating cellular metabolism. In this approach, the metabolic network of a given organism is
inferred from its genome and/or literature and converted to a matrix that contains the reaction’s
stoichiometry. Using a few simple assumptions, this matrix can be used to perform simulations under
di�erent experimental conditions to obtain additional insight into cellular physiology [165]. Several
tools have been developed for working with these types of models. Here, we will consider cobrapy
[166], a community tool for reading/writing constrained-based models and performing basic
simulation operations.

A tool of this nature is especially useful if developed in Python, as it should ideally be presented as a
package that can be easily installed with pip [35]. The use of an IDE is ideal for this case, as it will
provide additional features for testing changes in the tool. Practices that for other case studies were
useful now become essential, like complying with coding style and using version control, as hundreds
of people will likely read your code. Furthermore, the code should be (1) available via a hosting service
such as GitHub [55], (2) tested with a continuous development tool such as GitHub Actions [82], (3)
manually reviewed by collaborators to ensure correctness, (4) released following semantic versioning
standards [117], and (5) documented with a companion documentation website, rich with tutorials
and how-to guides. As a branching strategy, Git�ow [144] is probably the best suited, as it allows all
changes to existing code in a development branch and stable releases in the main branch.

Finally, due to the large scope of this project, additional considerations must be made to maintain a
healthy user base. O�er a place for users to raise questions, such as Gitter [136], Google groups
[137], or GitHub Discussions [138], and make sure to reply to new questions often. Guidelines should
also be provided for everything, including how to: open issues with example templates, contribute
using pull-request templates, communicate within the community via a code of conduct, and perform
other routine tasks with development guidelines and/or wikis. Addressing issues routinely and quickly
is also essential in a project of this nature to avoid giving the impression of a stagnant project.
Additional tools such as a Kanban �owchart with the help of GitHub Projects [146] will help prioritize
issues, or Jira [150] or Zenhub [149] if several repositories require joint coordination.

Final words

Good practices in computational biology have gained the spotlight among researchers thanks to
several guiding principles published, as well as the increasing usage of Git-based repositories and

work�ow managers. This review adds to the existing literature by introducing a comprehensive list of
good practices and associated tools that can be applied to any computational biology project,
regardless of the speci�c sub�eld or the experience of the researcher.

We are aware that the many tools and practices introduced in this study and their ever-changing
nature may seem overwhelming, especially for someone new to the �eld. To overcome this, we
encourage you to implement only a few practices and tools �rst, starting from your personal research,
and expanding your repertoire over time. More important than any speci�c tool is keeping a mindset
of striving for reproducibility. We also note that our highlighted list of tools is not comprehensive, with
many new tools being released. Updated reviews will be essential to help new computational
biologists enter the �eld as well as to keep experienced computational biologists up to date with the
latest trends.

The consequences of not following good computational practices are often not seen immediately but
become evident and detrimental towards project progress over time. As with all scienti�c endeavors,
computational biology heavily relies on previous knowledge; as such, the good practices we adopt
serve as building blocks for the overall reproducibility of the �eld, propelling novel and exciting future
discoveries.

Acknowledgments

We would like to thank Nelson Johansen for his insights on the scRNA-seq data integration case study.

References

1. NIH working de�nition of bioinformatics and computational biology
Huerta Michael, Downing Gregory, Haseltine Florence, Seto Belinda, Liu Yuan
(2000-07-17)
https://www.kennedykrieger.org/sites/default/�les/library/documents/research/center-labs-
cores/bioinformatics/bioinformatics-def.pdf

2. What is bioinformatics? A proposed de�nition and overview of the �eld.
NM Luscombe, D Greenbaum, M Gerstein
Methods of information in medicine (2001) https://www.ncbi.nlm.nih.gov/pubmed/11552348
PMID: 11552348

3. How do scientists develop scienti�c software? An external replication
Gustavo Pinto, Igor Wiese, Luiz Felipe Dias
2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER) (2018-03) https://doi.org/ggk6nc
DOI: 10.1109/saner.2018.8330263 · ISBN: 9781538649695

4. The FAIR Guiding Principles for scienti�c data management and stewardship
Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton,
Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne, …
Barend Mons
Scienti�c Data (2016-12) https://doi.org/bdd4
DOI: 10.1038/sdata.2016.18 · PMID: 26978244 · PMCID: PMC4792175

5. Barely su�cient practices in scienti�c computing
Graham Lee, Sebastian Bacon, Ian Bush, Laura Fortunato, David Gavaghan, Thibault Lestang,
Caroline Morton, Martin Robinson, Philippe Rocca-Serra, Susanna-Assunta Sansone, Helena Webb
Patterns (2021-02) https://doi.org/gjpcb6
DOI: 10.1016/j.patter.2021.100206 · PMID: 33659915 · PMCID: PMC7892476

6. Good enough practices in scienti�c computing
Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt, Tracy K. Teal
PLOS Computational Biology (2017-06-22) https://doi.org/gbkbwp
DOI: 10.1371/journal.pcbi.1005510 · PMID: 28640806 · PMCID: PMC5480810

7. Best Practices for Scienti�c Computing
Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T. Guy, Steven H.
D. Haddock, Kathryn D. Hu�, Ian M. Mitchell, Mark D. Plumbley, … Paul Wilson
PLoS Biology (2014-01-07) https://doi.org/qtt
DOI: 10.1371/journal.pbio.1001745 · PMID: 24415924 · PMCID: PMC3886731

8. Software engineering for scienti�c big data analysis
Björn A Grüning, Samuel Lampa, Marc Vaudel, Daniel Blankenberg
GigaScience (2019-05-01) https://doi.org/gf4f4m
DOI: 10.1093/gigascience/giz054 · PMID: 31121028 · PMCID: PMC6532757

9. So you want to be a computational biologist?
Nick Loman, Mick Watson

https://www.kennedykrieger.org/sites/default/files/library/documents/research/center-labs-cores/bioinformatics/bioinformatics-def.pdf
https://www.ncbi.nlm.nih.gov/pubmed/11552348
https://www.ncbi.nlm.nih.gov/pubmed/11552348
https://doi.org/ggk6nc
https://doi.org/10.1109/saner.2018.8330263
https://worldcat.org/isbn/9781538649695
https://doi.org/bdd4
https://doi.org/10.1038/sdata.2016.18
https://www.ncbi.nlm.nih.gov/pubmed/26978244
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175
https://doi.org/gjpcb6
https://doi.org/10.1016/j.patter.2021.100206
https://www.ncbi.nlm.nih.gov/pubmed/33659915
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892476
https://doi.org/gbkbwp
https://doi.org/10.1371/journal.pcbi.1005510
https://www.ncbi.nlm.nih.gov/pubmed/28640806
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480810
https://doi.org/qtt
https://doi.org/10.1371/journal.pbio.1001745
https://www.ncbi.nlm.nih.gov/pubmed/24415924
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886731
https://doi.org/gf4f4m
https://doi.org/10.1093/gigascience/giz054
https://www.ncbi.nlm.nih.gov/pubmed/31121028
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532757
https://doi.org/p3j

Nature Biotechnology (2013-11) https://doi.org/p3j
DOI: 10.1038/nbt.2740 · PMID: 24213777

10. Ten simple rules for biologists learning to program
Maureen A. Carey, Jason A. Papin
PLOS Computational Biology (2018-01-04) https://doi.org/gft4n3
DOI: 10.1371/journal.pcbi.1005871 · PMID: 29300745 · PMCID: PMC5754048

11. Streamlining Data-Intensive Biology With Work�ow Systems
Taylor Reiter, Phillip T. Brooks, Luiz Irber, Shannon E. K. Joslin, Charles M. Reid, Camille Scott, C.
Titus Brown, N. Tessa Pierce
Bioinformatics (2020-07-01) https://doi.org/gg353v
DOI: 10.1101/2020.06.30.178673

12. A Padawan Programmer’s Guide to Developing Software Libraries
James T. Yurkovich, Benjamin J. Yurkovich, Andreas Dräger, Bernhard O. Palsson, Zachary A. King
Cell Systems (2017-11) https://doi.org/gg8tqz
DOI: 10.1016/j.cels.2017.08.003 · PMID: 28988801

13. Ten Simple Rules for Taking Advantage of Git and GitHub
Yasset Perez-Riverol, Laurent Gatto, Rui Wang, Timo Sachsenberg, Julian Uszkoreit, Felipe da Veiga
Leprevost, Christian Fufezan, Tobias Ternent, Stephen J. Eglen, Daniel S. Katz, … Juan Antonio
Vizcaíno
PLOS Computational Biology (2016-07-14) https://doi.org/gbrb39
DOI: 10.1371/journal.pcbi.1004947 · PMID: 27415786 · PMCID: PMC4945047

14. Ten Simple Rules for Reproducible Research in Jupyter Notebooks
Adam Rule, Amanda Birmingham, Cristal Zuniga, Ilkay Altintas, Shih-Cheng Huang, Rob Knight,
Niema Moshiri, Mai H. Nguyen, Sara Brin Rosenthal, Fernando Pérez, Peter W. Rose
arXiv (2018-10-13) https://arxiv.org/abs/1810.08055v1

15. Bash - GNU Project - Free Software Foundation https://www.gnu.org/software/bash/

16. Welcome to Python.org
Python.org
https://www.python.org/

17. R: The R Project for Statistical Computing https://www.r-project.org/

18. R: The R Project for Statistical Computing https://www.r-project.org/

19. The Perl Programming Language - www.perl.org https://www.perl.org/

20. MathWorks - Makers of MATLAB and Simulink https://www.mathworks.com/

21. The Julia Programming Language https://julialang.org/

22. cplusplus.com - The C++ Resources Network https://www.cplusplus.com/

23. Rust Programming Language https://www.rust-lang.org/

24. Make - GNU Project - Free Software Foundation https://www.gnu.org/software/make/

https://doi.org/p3j
https://doi.org/10.1038/nbt.2740
https://www.ncbi.nlm.nih.gov/pubmed/24213777
https://doi.org/gft4n3
https://doi.org/10.1371/journal.pcbi.1005871
https://www.ncbi.nlm.nih.gov/pubmed/29300745
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5754048
https://doi.org/gg353v
https://doi.org/10.1101/2020.06.30.178673
https://doi.org/gg8tqz
https://doi.org/10.1016/j.cels.2017.08.003
https://www.ncbi.nlm.nih.gov/pubmed/28988801
https://doi.org/gbrb39
https://doi.org/10.1371/journal.pcbi.1004947
https://www.ncbi.nlm.nih.gov/pubmed/27415786
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945047
https://arxiv.org/abs/1810.08055v1
https://www.gnu.org/software/bash/
https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.perl.org/
https://www.mathworks.com/
https://julialang.org/
https://www.cplusplus.com/
https://www.rust-lang.org/
https://www.gnu.org/software/make/
https://snakemake.github.io/

25. Snakemake - A framework for reproducible data analysis https://snakemake.github.io/

26. A DSL for parallel and scalable computational pipelines | Next�ow https://www.next�ow.io/

27. Home
Common Work�ow Language (CWL)
Common Work�ow Language (CWL) https://www.commonwl.org/

28. OpenWDL https://openwdl.org/

29. Home - Cookiecutter Data Science https://drivendata.github.io/cookiecutter-data-science/

30. GitHub - Reproducible-Science-Curriculum/rr-init: Research project initialization and
organization following reproducible research guidelines
GitHub
https://github.com/Reproducible-Science-Curriculum/rr-init

31. GitHub - snakemake-work�ows/snakemake-work�ow-template: A template for standard
compliant snakemake-work�ows
GitHub
https://github.com/snakemake-work�ows/snakemake-work�ow-template

32. Virtualenv — virtualenv 20.14.2.dev2+g8d78ee0 documentation
https://virtualenv.pypa.io/en/latest/

33. Project Environments https://rstudio.github.io/renv/index.html

34. Conda — Conda documentation https://docs.conda.io/en/latest/

35. pip documentation v22.0.4 https://pip.pypa.io/en/stable/

36. Bioconductor - Home https://www.bioconductor.org/

37. RStudio Package Manager https://www.rstudio.com/products/package-manager/

38. A hackable text editor for the 21st Century
Atom
https://atom.io/

39. Sublime Text - the sophisticated text editor for code, markup and prose
https://www.sublimetext.com/

40. Visual Studio Code - Code Editing. Rede�ned https://code.visualstudio.com/

41. Notepad++ https://notepad-plus-plus.org/

42. welcome home : vim online https://www.vim.org/

43. GNU Emacs - GNU Project https://www.gnu.org/software/emacs/

44. Project Jupyter https://jupyter.org

https://snakemake.github.io/
https://www.nextflow.io/
https://www.commonwl.org/
https://openwdl.org/
https://drivendata.github.io/cookiecutter-data-science/
https://github.com/Reproducible-Science-Curriculum/rr-init
https://github.com/snakemake-workflows/snakemake-workflow-template
https://virtualenv.pypa.io/en/latest/
https://rstudio.github.io/renv/index.html
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/
https://www.bioconductor.org/
https://www.rstudio.com/products/package-manager/
https://atom.io/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://notepad-plus-plus.org/
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://jupyter.org/

45. PyCharm: the Python IDE for Professional Developers by JetBrains
JetBrains
https://www.jetbrains.com/pycharm/

46. Home — Spyder IDE https://www.spyder-ide.org/

47. RStudio | Open source & professional software for data science teams
https://www.rstudio.com/

48. R Markdown https://rmarkdown.rstudio.com/

49. PEP 8 – Style Guide for Python Code | peps.python.org https://peps.python.org/pep-0008/

50. GitHub - google/styleguide: Style guides for Google-originated open-source projects
GitHub
https://github.com/google/styleguide

51. Black 22.3.0 documentation https://black.readthedocs.io/en/stable/

52. GitHub - snakemake/snakefmt: The uncompromising Snakemake code formatter
GitHub
https://github.com/snakemake/snakefmt

53. Markdown Guide https://www.markdownguide.org/

54. Git https://git-scm.com/

55. GitHub: Where the world builds software
GitHub
https://github.com/

56. Iterate faster, innovate together | GitLab https://about.gitlab.com/

57. Bitbucket | The Git solution for professional teams
Atlassian
Bitbucket https://bitbucket.org/product

58. GitHub Desktop
GitHub Desktop
https://desktop.github.com/

59. GitKraken Legendary Git Tools | GitKraken https://www.gitkraken.com

60. Stack Over�ow Developer Survey 2021
Stack Over�ow
https://insights.stackover�ow.com/survey/2021/?utm_source=social-
share&utm_medium=social&utm_campaign=dev-survey-2021

61. https://www.kaggle.com/kaggle/kaggle-survey-2021

62. GitHub - Bioconductor/BiocManager: CRAN Package For Managing Bioconductor Packages
GitHub
https://github.com/Bioconductor/BiocManager

https://www.jetbrains.com/pycharm/
https://www.spyder-ide.org/
https://www.rstudio.com/
https://rmarkdown.rstudio.com/
https://peps.python.org/pep-0008/
https://github.com/google/styleguide
https://black.readthedocs.io/en/stable/
https://github.com/snakemake/snakefmt
https://www.markdownguide.org/
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/product
https://desktop.github.com/
https://www.gitkraken.com/
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://www.kaggle.com/kaggle/kaggle-survey-2021
https://github.com/Bioconductor/BiocManager

63. Welcome to the Tidyverse
Hadley Wickham, Mara Averick, Jennifer Bryan, Winston Chang, Lucy McGowan, Romain François,
Garrett Grolemund, Alex Hayes, Lionel Henry, Jim Hester, … Hiroaki Yutani
Journal of Open Source Software (2019-11-21) https://doi.org/ggddkj
DOI: 10.21105/joss.01686

64. Why scientists are turning to Rust
Je�rey M. Perkel
Nature (2020-12-03) https://doi.org/ghqc7g
DOI: 10.1038/d41586-020-03382-2 · PMID: 33262490

65. Migrate Your Genomic Research to the Cloud
The AnVIL
https://anvilproject.org/

66. Inverting the model of genomics data sharing with the NHGRI Genomic Data Science
Analysis, Visualization, and Informatics Lab-space
Michael C. Schatz, Anthony A. Philippakis, Enis Afgan, Eric Banks, Vincent J. Carey, Robert J. Carroll,
Alessandro Culotti, Kyle Ellrott, Jeremy Goecks, Robert L. Grossman, … Jason Walker
Cell Genomics (2022-01) https://doi.org/gn7rf9
DOI: 10.1016/j.xgen.2021.100085 · PMID: 35199087 · PMCID: PMC8863334

67. Home - Cromwell https://cromwell.readthedocs.io/en/stable/

68. A Quick Guide to Organizing Computational Biology Projects
William Sta�ord Noble
PLoS Computational Biology (2009-07-31) https://doi.org/fbbpkn
DOI: 10.1371/journal.pcbi.1000424 · PMID: 19649301 · PMCID: PMC2709440

69. Distribution and Reproducibility — Snakemake 7.3.8 documentation
https://snakemake.readthedocs.io/en/stable/snake�les/deployment.html

70. News — Bioconda documentation https://bioconda.github.io/

71. Google Colaboratory https://colab.research.google.com/

72. Best practices — Snakemake 7.3.8 documentation
https://snakemake.readthedocs.io/en/stable/snake�les/best_practices.html

73. GitHub �ow
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/get-started/quickstart/github-�ow

74. pytest: helps you write better programs — pytest documentation
https://docs.pytest.org/en/stable/

75. Unit Testing for R https://testthat.r-lib.org/

76. Flake8: Your Tool For Style Guide Enforcement — �ake8 4.0.1 documentation
https://�ake8.pycqa.org/en/latest/

77. Safety CLI - Security for your Python dependencies https://pyup.io/safety/

https://doi.org/ggddkj
https://doi.org/10.21105/joss.01686
https://doi.org/ghqc7g
https://doi.org/10.1038/d41586-020-03382-2
https://www.ncbi.nlm.nih.gov/pubmed/33262490
https://anvilproject.org/
https://doi.org/gn7rf9
https://doi.org/10.1016/j.xgen.2021.100085
https://www.ncbi.nlm.nih.gov/pubmed/35199087
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863334
https://cromwell.readthedocs.io/en/stable/
https://doi.org/fbbpkn
https://doi.org/10.1371/journal.pcbi.1000424
https://www.ncbi.nlm.nih.gov/pubmed/19649301
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2709440
https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html
https://bioconda.github.io/
https://colab.research.google.com/
https://snakemake.readthedocs.io/en/stable/snakefiles/best_practices.html
http://ghdocs-prod.azurewebsites.net/en/get-started/quickstart/github-flow
https://docs.pytest.org/en/stable/
https://testthat.r-lib.org/
https://flake8.pycqa.org/en/latest/
https://pyup.io/safety/

78. Codecov - The Leading Code Coverage Solution
Codecov
https://about.codecov.io/

79. Welcome to the tox automation project — tox 3.25.1.dev3 documentation
https://tox.wiki/en/latest/

80. Homepage | Travis CI – Start building today!
Travis CI
https://www.travis-ci.com/

81. Continuous Integration and Delivery
CircleCI
https://circleci.com/

82. Features • GitHub Actions
GitHub
https://github.com/features/actions

83. Reviewing changes in pull requests
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/pull-requests/collaborating-with-pull-
requests/reviewing-changes-in-pull-requests

84. Crucible Code Review Tool for Git, SVN, Perforce and More
Atlassian
Atlassian https://www.atlassian.com/software/crucible

85. Upsource: Code Review and Project Analytics by JetBrains
JetBrains
https://www.jetbrains.com/upsource/

86. FAIRshake https://fairshake.cloud/

87. Tidy Data
Hadley Wickham
Journal of Statistical Software (2014) https://doi.org/gdm3p7
DOI: 10.18637/jss.v059.i10

88. Data Version Control · DVC
Data Version Control · DVC
https://dvc.org/

89. nbviewer https://nbviewer.org/

90. The Binder Project https://mybinder.org/

91. nbdime – di�ng and merging of Jupyter Notebooks — nbdime 3.1.1.dev documentation
https://nbdime.readthedocs.io/en/latest/

92. ReviewNB - Jupyter Notebook Code Reviews & Collaboration https://www.reviewnb.com/

93. Snakemake work�ow catalog https://snakemake.github.io/snakemake-work�ow-catalog/

https://about.codecov.io/
https://tox.wiki/en/latest/
https://www.travis-ci.com/
https://circleci.com/
https://github.com/features/actions
http://ghdocs-prod.azurewebsites.net/en/pull-requests/collaborating-with-pull-requests/reviewing-changes-in-pull-requests
https://www.atlassian.com/software/crucible
https://www.jetbrains.com/upsource/
https://fairshake.cloud/
https://doi.org/gdm3p7
https://doi.org/10.18637/jss.v059.i10
https://dvc.org/
https://nbviewer.org/
https://mybinder.org/
https://nbdime.readthedocs.io/en/latest/
https://www.reviewnb.com/
https://snakemake.github.io/snakemake-workflow-catalog/
https://workflowhub.eu/

94. Work�owHub https://work�owhub.eu/

95. Google Docs: Free Online Document Editor | Google Workspace
https://www.facebook.com/GoogleDocs/

96. Microsoft 365 - Subscription for O�ce Apps | Microsoft 365 https://www.microsoft.com/en-
us/microsoft-365

97. Open Research Collaboration and Publishing - Authorea https://www.authorea.com/

98. Overleaf, Online LaTeX Editor https://www.overleaf.com

99. Manubot - Manuscripts, open and automated https://manubot.org

100. Semantic Commit Messages
Sparkbox
https://sparkbox.com/foundry/semantic_commit_messages

101. Conventional Commits
Conventional Commits
https://www.conventionalcommits.org/en/v1.0.0/

102. GitHub CLI
GitHub CLI
https://cli.github.com/

103. About issues
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/issues/tracking-your-work-with-issues/about-issues

104. Types of Software Testing
GeeksforGeeks
(2017-08-01) https://www.geeksforgeeks.org/types-software-testing/

105. Combine API and UI Testing For Con�dence At Every Layer Of Your Application
smartbear.com
https://smartbear.com/en/solutions/end-to-end-testing/

106. How to do a code review
eng-practices
https://google.github.io/eng-practices/review/reviewer/

107. Code Review Guidelines for Humans
Philipp Hauer
Philipp Hauer’s Blog (2018-07-31) https://phauer.com/2018/code-review-guidelines/

108. Zenodo - Research. Shared. https://zenodo.org/

109. about �gshare https://knowledge.�gshare.com/about

110. Git Large File Storage
Git Large File Storage
https://git-lfs.github.com/

https://workflowhub.eu/
https://www.facebook.com/GoogleDocs/
https://www.microsoft.com/en-us/microsoft-365
https://www.authorea.com/
https://www.overleaf.com/
https://manubot.org/
https://sparkbox.com/foundry/semantic_commit_messages
https://www.conventionalcommits.org/en/v1.0.0/
https://cli.github.com/
http://ghdocs-prod.azurewebsites.net/en/issues/tracking-your-work-with-issues/about-issues
https://www.geeksforgeeks.org/types-software-testing/
https://smartbear.com/en/solutions/end-to-end-testing/
https://google.github.io/eng-practices/review/reviewer/
https://phauer.com/2018/code-review-guidelines/
https://zenodo.org/
https://knowledge.figshare.com/about
https://git-lfs.github.com/

111. About large �les on GitHub
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/repositories/working-with-�les/managing-large-
�les/about-large-�les-on-github

112. nbviewer https://nbviewer.org/

113. Open collaborative writing with Manubot
Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu, Venkat S. Malladi, Casey
S. Greene, Anthony Gitter
PLOS Computational Biology (2019-06-24) https://doi.org/c7np
DOI: 10.1371/journal.pcbi.1007128 · PMID: 31233491 · PMCID: PMC6611653

114. Make a README
Make a README
https://www.makeareadme.com

115. Licenses
Choose a License
https://choosealicense.com/licenses/

116. Managing releases in a repository
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/repositories/releasing-projects-on-github/managing-
releases-in-a-repository

117. Semantic Versioning 2.0.0
Tom Preston-Werner
Semantic Versioning https://semver.org/

118. PyPI · The Python Package Index
PyPI
https://pypi.org/

119. The Comprehensive R Archive Network https://cran.r-project.org/

120. Dash Overview https://plotly.com/dash

121. Shiny https://shiny.rstudio.com/

122. Daring Fireball: Markdown Syntax Documentation
https://daring�reball.net/projects/markdown/syntax

123. reStructuredText (2021-10-22) https://docutils.sourceforge.io/rst.html

124. The Legal Side of Open Source
Open Source Guides
(2022-04-19) https://opensource.guide/legal/

125. Plotly https://plotly.com/api/

126. Documentation System https://documentation.divio.com/

http://ghdocs-prod.azurewebsites.net/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
https://nbviewer.org/
https://doi.org/c7np
https://doi.org/10.1371/journal.pcbi.1007128
https://www.ncbi.nlm.nih.gov/pubmed/31233491
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611653
https://www.makeareadme.com/
https://choosealicense.com/licenses/
http://ghdocs-prod.azurewebsites.net/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository
https://semver.org/
https://pypi.org/
https://cran.r-project.org/
https://plotly.com/dash
https://shiny.rstudio.com/
https://daringfireball.net/projects/markdown/syntax
https://docutils.sourceforge.io/rst.html
https://opensource.guide/legal/
https://plotly.com/api/
https://documentation.divio.com/

127. Python Docstrings
GeeksforGeeks
(2017-06-01) https://www.geeksforgeeks.org/python-docstrings/

128. Home | Read the Docs https://readthedocs.org/

129. GitBook - Where software teams break knowledge silos. https://www.gitbook.com/

130. Home | Bookdown https://bookdown.org/home/

131. GitHub Pages
GitHub Pages
https://pages.github.com/

132. GitHub - jazzband/pip-tools: A set of tools to keep your pinned Python dependencies fresh.
GitHub
https://github.com/jazzband/pip-tools

133. Home
Docker
https://www.docker.com/

134. Home
Sylabs
https://sylabs.io/

135. What is Software Rot? - De�nition from Techopedia
Techopedia.com
http://www.techopedia.com/de�nition/22202/software-rot

136. Gitter https://gitter.im/

137. Redirecting to Google Groups https://groups.google.com/forum/m

138. GitHub Discussions Documentation
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/discussions

139. About issues
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/issues/tracking-your-work-with-issues/about-issues

140. Setting guidelines for repository contributors
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/communities/setting-up-your-project-for-healthy-
contributions/setting-guidelines-for-repository-contributors

141. About wikis
GitHub Docs
http://ghdocs-prod.azurewebsites.net:80/en/communities/documenting-your-project-with-
wikis/about-wikis

https://www.geeksforgeeks.org/python-docstrings/
https://readthedocs.org/
https://www.gitbook.com/
https://bookdown.org/home/
https://pages.github.com/
https://github.com/jazzband/pip-tools
https://www.docker.com/
https://sylabs.io/
http://www.techopedia.com/definition/22202/software-rot
https://gitter.im/
https://groups.google.com/forum/m
http://ghdocs-prod.azurewebsites.net/en/discussions
http://ghdocs-prod.azurewebsites.net/en/issues/tracking-your-work-with-issues/about-issues
http://ghdocs-prod.azurewebsites.net/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
http://ghdocs-prod.azurewebsites.net/en/communities/documenting-your-project-with-wikis/about-wikis

142. Contributor Covenant: A Code of Conduct for Open Source and Other Digital Commons
Communities https://www.contributor-covenant.org/

143. policies/citizen_code_of_conduct.md at master · stumpsyn/policies
GitHub
https://github.com/stumpsyn/policies

144. A successful Git branching model
nvie.com
http://nvie.com/posts/a-successful-git-branching-model/

145. Kanban - A brief introduction
Atlassian
Atlassian https://www.atlassian.com/agile/kanban

146. GitHub Issues · Project planning for developers
GitHub
https://github.com/features/issues

147. Boards Timelines FAQ | GitKraken https://www.gitkraken.com/boards-and-timelines

148. What is Scrum?
Scrum.org
https://www.scrum.org/resources/what-is-scrum

149. ZenHub - Productivity Management for Software Teams https://www.zenhub.com/

150. Jira | Issue & Project Tracking Software
Atlassian
Atlassian https://www.atlassian.com/software/jira

151. Manifesto for Agile Software Development https://agilemanifesto.org/

152. GitHub - c4urself/bump2version: Version-bump your software with a single command
GitHub
https://github.com/c4urself/bump2version

153. Danger - Stop Saying “You Forgot To…” in Code Review
Orta Therox
http://danger.systems/ruby/index.html

154. Git - Git Hooks https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

155. A complete reference genome improves analysis of human genetic variation
Sergey Aganezov, Stephanie M. Yan, Daniela C. Soto, Melanie Kirsche, Samantha Zarate, Pavel
Avdeyev, Dylan J. Taylor, Kishwar Sha�n, Alaina Shumate, Chunlin Xiao, … Michael C. Schatz
Genomics (2021-07-13) https://doi.org/gk6dwc
DOI: 10.1101/2021.07.12.452063

156. Exponential scaling of single-cell RNA-seq in the past decade
Valentine Svensson, Roser Vento-Tormo, Sarah A Teichmann
Nature Protocols (2018-04) https://doi.org/gc5ndt
DOI: 10.1038/nprot.2017.149 · PMID: 29494575

https://www.contributor-covenant.org/
https://github.com/stumpsyn/policies
http://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/agile/kanban
https://github.com/features/issues
https://www.gitkraken.com/boards-and-timelines
https://www.scrum.org/resources/what-is-scrum
https://www.zenhub.com/
https://www.atlassian.com/software/jira
https://agilemanifesto.org/
https://github.com/c4urself/bump2version
http://danger.systems/ruby/index.html
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://doi.org/gk6dwc
https://doi.org/10.1101/2021.07.12.452063
https://doi.org/gc5ndt
https://doi.org/10.1038/nprot.2017.149
https://www.ncbi.nlm.nih.gov/pubmed/29494575

157. scAlign: a tool for alignment, integration, and rare cell identi�cation from scRNA-seq data
Nelson Johansen, Gerald Quon
Genome Biology (2019-12) https://doi.org/gh5jhj
DOI: 10.1186/s13059-019-1766-4 · PMID: 31412909 · PMCID: PMC6693154

158. TensorFlow
TensorFlow
https://www.tensor�ow.org/

159. PyTorch https://www.pytorch.org

160. Tools for Single Cell Genomics https://satijalab.org/seurat/

161. Integrated analysis of multimodal single-cell data
Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M. Mauck, Shiwei Zheng, Andrew
Butler, Maddie J. Lee, Aaron J. Wilk, Charlotte Darby, Michael Zager, … Rahul Satija
Cell (2021-06) https://doi.org/gkchrs
DOI: 10.1016/j.cell.2021.04.048 · PMID: 34062119 · PMCID: PMC8238499

162. Interface to Python https://rstudio.github.io/reticulate/

163. TensorBoard
TensorFlow
https://www.tensor�ow.org/tensorboard

164. Bioconductor Forum https://support.bioconductor.org/

165. Constraint-based models predict metabolic and associated cellular functions
Aarash Bordbar, Jonathan M. Monk, Zachary A. King, Bernhard O. Palsson
Nature Reviews Genetics (2014-02) https://doi.org/f5sk8s
DOI: 10.1038/nrg3643 · PMID: 24430943

166. COBRApy: COnstraints-Based Reconstruction and Analysis for Python
Ali Ebrahim, Joshua A Lerman, Bernhard O Palsson, Daniel R Hyduke
BMC Systems Biology (2013-12) https://doi.org/gb3qmh
DOI: 10.1186/1752-0509-7-74 · PMID: 23927696 · PMCID: PMC3751080

167. RNA sequencing: the teenage years
Rory Stark, Marta Grzelak, James Had�eld
Nature Reviews Genetics (2019-11) https://doi.org/gf6vfx
DOI: 10.1038/s41576-019-0150-2 · PMID: 31341269

168. Genome-scale metabolic modelling of P. thermoglucosidasius NCIMB 11955 reveals
metabolic bottlenecks in anaerobic metabolism.
Viviënne Mol, Martyn Bennett, Benjamín J. Sánchez, Beata K. Lisowska, Markus J. Herrgård, Alex
Toftgaard Nielsen, David J Leak, Nikolaus Sonnenschein
Microbiology (2021-02-01) https://doi.org/gh4s89
DOI: 10.1101/2021.02.01.429138

169. A systematic assessment of current genome-scale metabolic reconstruction tools
Sebastián N. Mendoza, Brett G. Olivier, Douwe Molenaar, Bas Teusink
Genome Biology (2019-12) https://doi.org/gh3pjm
DOI: 10.1186/s13059-019-1769-1 · PMID: 31391098 · PMCID: PMC6685185

https://doi.org/gh5jhj
https://doi.org/10.1186/s13059-019-1766-4
https://www.ncbi.nlm.nih.gov/pubmed/31412909
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693154
https://www.tensorflow.org/
https://www.pytorch.org/
https://satijalab.org/seurat/
https://doi.org/gkchrs
https://doi.org/10.1016/j.cell.2021.04.048
https://www.ncbi.nlm.nih.gov/pubmed/34062119
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8238499
https://rstudio.github.io/reticulate/
https://www.tensorflow.org/tensorboard
https://support.bioconductor.org/
https://doi.org/f5sk8s
https://doi.org/10.1038/nrg3643
https://www.ncbi.nlm.nih.gov/pubmed/24430943
https://doi.org/gb3qmh
https://doi.org/10.1186/1752-0509-7-74
https://www.ncbi.nlm.nih.gov/pubmed/23927696
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3751080
https://doi.org/gf6vfx
https://doi.org/10.1038/s41576-019-0150-2
https://www.ncbi.nlm.nih.gov/pubmed/31341269
https://doi.org/gh4s89
https://doi.org/10.1101/2021.02.01.429138
https://doi.org/gh3pjm
https://doi.org/10.1186/s13059-019-1769-1
https://www.ncbi.nlm.nih.gov/pubmed/31391098
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685185

170. MEMOTE for standardized genome-scale metabolic model testing
Christian Lieven, Moritz E. Beber, Brett G. Olivier, Frank T. Bergmann, Meric Ataman, Parizad
Babaei, Jennifer A. Bartell, Lars M. Blank, Siddharth Chauhan, Kevin Correia, … Cheng Zhang
Nature Biotechnology (2020-03-01) https://doi.org/gh4s88
DOI: 10.1038/s41587-020-0446-y · PMID: 32123384 · PMCID: PMC7082222

Supplementary Material

Additional case study 1: RNA-seq di�erential gene expression

Di�erential gene expression (DGE) analysis is commonly used in the �eld of functional genomics. Its
main goal is to determine quantitative changes in gene expression levels between di�erent
experimental conditions or di�erent populations. Nowadays, given the availability of NGS
technologies, most DGE analyses are based on RNA-seq data, being the primary application of the
technology [167]. Here, we will consider a study designed to gain insights regarding a speci�c
condition of interest, leading to interest genes that can be functionally characterized in animal models
afterward. The experimental setup included a control group and an experimental group with the
condition of interest, both sequenced using RNA-seq. The experiment was conducted four times
independently to get four replicates per group.

In this example, the most relevant part is personal research. The �rst step is to decide which
programming languages to use. Considering that the bioinformatics analysis will include a �rst step
performed in the command line, where raw reads will undergo quality control and the number of
reads per transcripts will be counted, followed by a second step for data �ltering and statistical
analysis, the programming languages to use will be Shell and R. The folder structure must have
separated spaces for raw data, results, documentation, and scripts used in the analysis. We
recommend cloning the RR-init template into your HPC cluster. For this project, the best option will be
to use a Conda environment with R installed, where you can download packages from Bioconductor
and Bioconda. A shell script will be a suitable option for the �rst part of the analysis in the HPC cluster,
and R Studio for the second part of analysis and visualization. We advise to follow literate
programming, especially when writing R code, and to track changes using Git.

Additional case study 2: Genome-scale metabolic model

A sub-group of constraint-based models (Case Study 3) are genome-scale metabolic models, where
the model represents the complete metabolism of a cell, inferred from genome sequencing. These
models are signi�cantly larger in size, making the model generation and curation steps hard to trace
back if we don’t use adequate tools. As a reference paper, consider the generation, curation, and
validation of a genome-scale model for Parageobacillus thermoglucosidasius [168], a thermophilic
facultative anaerobic bacteria with promising traits for industrial metabolic engineering.

The �rst step in a project of this nature is to use one of the many reconstruction algorithms available
[169] to start from what is referred to as a draft reconstruction; therefore, the choice of programming
language for that section will depend on the selected algorithm. After that, there is a lengthy step of
model curation and gap �lling, in order to end up with a model that can produce all necessary building
blocks of the cell. For this step, we recommend a basic setup of Python as programming language and
Conda as environment manager, due to their ease of use and the growing number of Python
packages being developed in the �eld. Additionally, we advise using Jupyter Notebook as the main
working setup and Git for version control, as you can use di�erent notebooks (or di�erent versions of
a notebook) as logs of analysis performed on your working draft. When collaborating, tools that will be
especially useful while working on a genome-scale model are unit-testing, to ensure your model
maintains a certain quality as you and others develop it [170], and ReviewNB, to keep track of

https://doi.org/gh4s88
https://doi.org/10.1038/s41587-020-0446-y
https://www.ncbi.nlm.nih.gov/pubmed/32123384
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082222

changes in notebooks across commits and/or branches. Finally, when sharing the model within the
community, Zenodo is a great option for de�ning di�erent versions of the model, and any issue
tracker will make it possible for users to pinpoint mathematical or biological inconsistencies in the
network.

